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Abstract 

This study examined the association between MRI radiomics features of malignant breast 

masses and their histopathological, molecular characteristics, and response to neoadjuvant 

treatments. Utilizing a retrospective cohort of 70 breast cancer patients, this study conducted a 

detailed texture analysis on preoperative MRI scans, including the extraction of texture features, 

such as entropy, contrast, and homogeneity, and their analysis against histopathological and 

clinical target variables (e.g., lymph node metastasis) and molecular profiles. Statistical 

analyses and machine learning algorithms, including logistic regression and support vector 

machines, were employed to evaluate the predictive power of MRI texture features for 

determining molecular subtypes and evaluate the association of radiomics markers with 

neoadjuvant treatments. The findings reveal significant associations between specific MRI 

texture features and the histopathological and molecular characteristics of breast tumors, 

demonstrating that certain texture parameters are strongly associated with aggressive tumor 

phenotypes and poorer response to chemotherapy. Despite the limited dataset, machine learning 

models showcased promising performance in classifying tumors into molecular subtypes and 

predicting treatment outcomes, highlighting the potential of MRI texture analysis in clinical 

decision-making. This study underscores the potential of MRI texture analysis as a non-invasive 

tool for enhancing the personalized management of breast cancer. The significant associations 

between MRI texture features and critical tumor characteristics suggest that these features could 

serve as valuable biomarkers for predicting tumor behavior and treatment efficacy. The findings 

advocate for further large-scale research into integrating MRI texture analysis into clinical 

practice to tailor treatment strategies to individual tumor profiles, ultimately aiming to improve 

patient outcomes in breast cancer treatment. 



Deciphering Breast Cancer Complexity: A Study on the Predictive Power of MRI Texture Analysis for Tumor Characterization and Treatment Response  

ESIC | Vol. 6 | No. 2 | 2022                                         81 

Keywords: breast cancer; texture analysis; breast mri; neoadjuvant therapy; cancer subtypes; tumor 

heterogeneity. 

 

Recent statistics have positioned female 

breast cancer as the foremost cause of cancer 

incidence globally in 2020 [1]. With 

approximately 2.3 million new cases, it 

constitutes 11.7% of total cancer cases, 

making it the most frequently diagnosed 

cancer in women and the primary cause of 

cancer-related deaths among them. This 

disease accounts for a quarter of all cancer 

cases and a sixth of cancer deaths in women, 

leading in incidence in most countries [1]. 

Notably, its incidence rates in women are 

significantly higher than other cancers, with 

55.9 per 100,000 in developed countries and 

29.7 per 100,000 in developing countries [1]. 

The global response to this alarming trend 

includes extensive breast cancer screening 

programs, aimed at decreasing mortality rates 

through early detection and timely treatment 

[2]. Diagnostic breast imaging serves a dual 

purpose: it is utilized for screening in women 

without symptoms to facilitate early 

identification of breast cancer and is also 

employed to investigate breast abnormalities 

in symptomatic women, aiding in the timely 

detection of this disease. The World Health 

Organization advocates for regular, organized 

mammography screenings every two years for 

women aged 50 to 69 who are at average risk, 

particularly in resource-rich settings [3]. 

Conventional mammography, typically 

comprising bi-planar projections, is the 

cornerstone of screening modalities. In 

contrast, diagnostic evaluations incorporate 

advanced imaging techniques such as 

specialized mammographic views, 

ultrasonography (USG), and magnetic 

resonance imaging (MRI). MRI demonstrates 

a notable diagnostic accuracy for invasive 

breast carcinomas, with its sensitivity 

spanning from 75.2% to 100% and specificity 

ranging between 83% and 98.4% [4]. 

Dynamic contrast-enhanced MRI transcends 

mere lesion detection; it provides a 

comprehensive analysis encompassing lesion 

morphology, contour characteristics, 

volumetric assessment, diffusion limitations, 

and patterns of contrast uptake. Contemporary 

research underscores the significant role of 

these parameters in differentiating benign 

from malignant entities and prognosticating 

the histopathological attributes of the 

identified lesions [5–7]. 

Radiomics, an emerging field in medical 

imaging, harnesses the power of advanced 

computational techniques to extract a plethora 

of quantitative data from routine medical 

images [8]. This approach, predominantly 

applied in oncology, offers a distinct 

advantage over traditional biopsy methods. It 

allows for a comprehensive, non-invasive 

analysis of the entire tumor phenotype across 

multiple lesions simultaneously, in stark 

contrast to biopsies which sample only a 

fraction of a single heterogeneous tumor 

[9,10]. This ability to not only delineate but 

also link tumor characteristics to underlying 

biological processes [11] paves the way for 

personalized treatment strategies [12–14], 

aligning with the ethos of precision medicine. 

In breast cancer diagnostics, radiomics has 

demonstrated its potential in various domains 

including tumor diagnosis [15,16], response 

prediction to therapeutic interventions [17–

19], molecular subtype identification [20,21], 

and even in forecasting axillary lymph node 

metastases [22,23]. The traditional diagnostic 

regimen for early invasive breast cancer 

predominantly relies on radiological 
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evaluations such as mammography, 

ultrasound, and contrast-enhanced MRI, 

supplemented by histopathological 

confirmation from tissue samples obtained 

radiologically [24,25]. However, this 

approach has limitations: suboptimal 

sensitivity and predictive value [26], the 

invasive and uncomfortable nature of biopsies, 

prolonged waiting times for results [27], and 

the potential for missing significant 

heterogenous features of breast cancer [28]. In 

the era of personalized medicine, where timely 

and accurate diagnosis is paramount, 

radiomics offers a groundbreaking alternative. 

By extracting and analyzing qualitative and 

quantitative data from imaging, it supports 

evidence-based clinical decision-making [29]. 

The integration of high-dimensional radiomic 

data with clinical information facilitates the 

creation of robust decision support models. 

Thus, radiomics emerges not just as a 

diagnostic tool, but as a comprehensive 

approach for molecular profiling and 

treatment response assessment in breast 

cancer, potentially minimizing the need for 

invasive procedures [29]. 

The primary objective of our study is to 

meticulously compare the texture 

characteristics derived from MRI of known 

malignant breast masses with their 

corresponding histopathological and 

molecular features, as well as their response to 

neoadjuvant treatments. By identifying 

associations between these variables, our 

research aims to assess the utility of MRI 

texture features as reliable indicators of 

intratumoral heterogeneity. This endeavor 

could significantly contribute to predicting 

pathological outcomes and neoadjuvant 

responses, thereby advancing the field of 

personalized breast cancer management. 

 

 

Materials and Methods 

2.1. Study Design and Population 

This study was conducted in the 

Department of Radiology, Health Sciences 

University Izmir Bozyaka Training and 

Research Hospital, spanning the period from 

October 7, 2020, to January 10, 2021. Ethical 

approval was granted by the Clinical Research 

Ethics Committee of the same institution 

(Approval No: 07, Dated: October 7, 2020), 

approving the retrospective nature of this 

investigation. 

Our research centered on patients 

diagnosed with breast cancer within the 

Department of Pathology, Health Sciences 

University Izmir Bozyaka Training and 

Research Hospital, over the years 2018 and 

2019. The study’s inclusion criteria were 

meticulously defined to encompass: 1) 

individuals with a histopathological 

confirmation of breast carcinoma; 2) patients 

who underwent surgical intervention for 

breast cancer at our facility subsequent to their 

diagnosis; 3) patients who had preoperative 

breast MRI scans conducted at our institution; 

and 4) patients with lesions amenable to 

texture analysis on MRI, specifically those 

measuring at least 1 cm in diameter. Following 

these criteria, a cohort of 70 eligible cases was 

included for the study. 

For each case, detailed morphological and 

molecular data pertaining to the breast masses 

were meticulously extracted from the 

pathology reports. Subsequently, a 

comprehensive texture analysis was 

conducted on the MRI scans of these masses, 

employing advanced imaging techniques to 

elucidate potential correlations between 

radiomic features and pathological findings. 
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2.2. Histopathological Findings and Study 

Variables 

Histopathological analyses were 

performed on specimens obtained from partial 

or total mastectomies conducted between 

October 7, 2020, and January 10, 2021. Tissue 

samples, initially fixed in 10% formalin, were 

embedded in paraffin, from which 4-micron 

sections were prepared. These sections 

underwent standard Hematoxylin and Eosin 

staining, enabling detailed documentation of 

various histopathological parameters, such as 

histological grade and lymphovascular 

invasion, in the pathology reports. 

Complementing the morphological 

assessment, a panel of immunohistochemical 

markers, including Estrogen Receptor (ER), 

Progesterone Receptor (PR), Cerb B2, P53, 

and Ki-67, was evaluated. These markers were 

processed using an automated staining system 

(Ventana BenchMark XT, Ventana Medical 

Systems, Tucson, AZ). The ensuing 

pathological data were meticulously recorded. 

The extracted pathology report data 

encompassed: 1) receptor characteristics of 

breast carcinomas, categorized according to 

intrinsic subtypes (Luminal A, Luminal B, 

Her2 overexpression, and Triple Negative); 2) 

classification of intrinsic subtypes based on 

the status of ER, PR, Cerb B2, and Ki-67 

index, with a Ki-67 cutoff value of 30% 

delineating low (<30%) and high (≥30%) 

subgroups; 3) grading of masses following the 

Bloom-Richardson system; 4) P53 positivity 

in the masses, categorized as negative (<5%), 

weakly positive (5-50%), and strongly 

positive (>50%); 5) presence of 

lymphovascular invasion by malignant cells; 

6) detection of metastasis in dissected lymph 

nodes; 7) administration of neoadjuvant 

treatment to twenty patients pre-surgery, with 

their pathological responses assessed via the 

Miller-Payne scoring system [30]. Responses 

were categorized as 'no response' for grades 1-

3 and 'response' for grades 4-5.  

Grade Description 

1 Minimal or no cellular-level changes, with 
unchanged overall cell density. 

2 Up to 30% reduction in tumor cell density. 

3 Reduction in tumor cell density ranging 

from 30% to 90%. 

4 Greater than 90% decrease in tumor cell 

density, with cells discernible individually 

or in small clusters. 

5 Complete absence of malignant cells within 

the tumor bed. 

Table 1: Miller-Payne Scoring System for 

Evaluating Pathological Response to 

Neoadjuvant Treatment [30]. 

2.3. MRI Procedure 

Breast MRI examinations were performed 

using a 1.5 Tesla MRI system (Magnetom 

AERA, Siemens, Erlangen, Germany) in our 

clinic. To minimize hormonal influences on 

breast parenchyma, MRIs for premenopausal 

patients were strategically scheduled between 

the 7th and 14th days of their menstrual cycles. 

All examinations employed an 8-channel 

surface breast coil in the prone position, 

ensuring comprehensive coverage of a 32 cm 

imaging field. Prior to imaging, an antecubital 

vein was cannulated for the administration of 

the contrast agent. The contrast protocol 

involved the use of a gadolinium-based agent 

(Meglumine Gadoterat-Dotarem), dosed at 

0.1-0.2 mmol/kg. Our standard breast MRI 

protocol encompassed a suite of sequences: 

initial three-plane localizer and calibration 

images, followed by axial fat-suppressed 

Turbo Spin Echo (TSE) T1-weighted (T1A) 

and Turbo Inversion Recovery Magnitude 

(TIRM) sequences, alongside T2-weighted 

(T2A) fat-suppressed imaging. This was 
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succeeded by axial pre-contrast and dynamic 

post-contrast T1A imaging. The dynamic 

component entailed T1A SPectral Attenuated 

Inversion Recovery (SPAIR) sequences, 

executed in both axial and sagittal planes, with 

a series of six repetitions at one-minute 

intervals post-contrast injection. 

The imaging parameters were 

meticulously set for each sequence. For TSE 

T1A: Repetition Time (TR) 476 ms, Echo 

Time (TE) 11 ms, matrix 384x297, Number of 

Excitations (NEX) 1, slice thickness 4 mm. 

TIRM T2A parameters included TR 2250 ms, 

TE 56 ms, Inversion Time (TI) 165 ms, matrix 

384x270, NEX 1, slice thickness 4 mm. Axial 

T2A TSE sequences were characterized by TR 

5350 ms, TE 76 ms, matrix 320x217, NEX 2, 

slice thickness 4 mm. The dynamic sequences 

featured TR 4.53 ms, TE 1.82 ms, flip angle 

10°, matrix 416x313, NEX 1, slice thickness 2 

mm. Additionally, diffusion-weighted 

imaging (DWI) was performed using the echo-

planar imaging (EPI) technique with 

diffusion-sensitive gradients in three 

orthogonal directions (x, y, z), utilizing b-

values of 50, 200, and 800 s/mm². Diffusion 

parameters were set to TR 6400 ms, TE 66 ms, 

matrix 220x84, NEX 2, with a slice thickness 

of 4 mm. 

2.4. Radiologist Evaluation and Lesion 

Characterization 

Two radiologists evaluated all MR images. 

The assessed features included: 

1. Breast Composition: Classified 

according to the BI-RADS system [31]. 

2. Background Contrast Enhancement: 

Non-pathological enhancement of 

fibroglandular tissue, categorized into four 

levels: Minimal (<25%), Light (25-50%), 

Medium (50-75%), and Distinctive (>75%). 

3. Lesion Characteristics: 

● Location: Upper outer quadrant, 

upper inner quadrant, retroareolar, lower outer 

quadrant, lower inner quadrant. 

● Volume: Determined by volume 

measurement. 

● Shape: Round, oval, irregular. 

● Edge: Sharp, veiled, microlobulated, 

indistinct, spiculated. 

● T1 Signal: Isointense, hypointense, 

hyperintense relative to parenchyma. 

● T2 Signal: Isointense, hypointense, 

hyperintense relative to parenchyma. 

● Contrast Enhancement Pattern: 

Homogeneous, contrast enhancing septa, 

heterogeneous, none, peripheral. 

● Diffusion Property: Compared to 

parenchyma (less, equal, more). 

● Contrast Enhancement Curve: Type 

1, 2, or 3. 

● ADC Value: Recorded. 

4. Other Lesions: Presence of 

multifocality and multicentricity. 

2.5. Radiomics-based Texture Analysis  

MRI data of the enrolled cases, 

encompassing sequences, including T1A, 

T2A, early and late-phase post-contrast T1A, 

and diffusion-weighted imaging, were 

acquired in Digital Imaging and 

Communications in Medicine (DICOM) 

format. These images were then processed 

using the MaZda 4.6 software, a specialized 

tool for texture analysis developed by 

Szczypinski et al. [32]. A critical step involved 

the demarcation of the mass on the images by 

defining a Region of Interest (ROI). 

Recognizing the impact of ROI size on texture 

analysis outcomes, as evidenced in previous 
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studies [33], a uniform ROI of 10x10 pixels 

was employed for each lesion. Adhering to 

established protocols, the ROI was 

strategically placed on the most solid and 

contrast-enhanced segment of the lesion 

(Figure 1) [34]. 

 

Figure 1: Region-of-interest (ROI) placement 

for texture analysis on T1A, T2A and 

postcontrast T1A subtraction images of the 

same patient. 

The MaZda software facilitated a 

multifaceted texture analysis, starting with a 

histogram analysis that provides a global 

assessment based on pixel intensity, 

independent of spatial pixel relationships. The 

gradient analysis was executed by computing 

the gradient histogram of image intensity 

distribution. Co-occurrence Matrix (COM) 

analysis was employed to evaluate spatial 

relations and densities of pixel pairs at varied 

angles. Additionally, Run-Length Matrix 

(RLM) analysis was conducted to assess pixel 

runs of specific gray scale levels and lengths 

across four orientations (horizontal, vertical, 

45°, and 135°). This comprehensive analysis 

by the software yielded a detailed report for 

each case, summarizing diverse texture 

features. Considering the anticipated 

homogeneity across four-directional analyses, 

these values were consolidated into a singular 

parameter [35]. Hereafter, three-dimensional 

texture analysis was executed on the MR 

images in DICOM format using the MaZda 

4.6 software. This analysis yielded several 

histogram-based features, including mean 

brightness, variance, skewness, and kurtosis. 

Additionally, 11 features were extracted from 

the gray-level co-occurrence matrix as part of 

the Second Order Texture Analysis. These 

features included Angular Second Moment 

(AngScMom), Contrast, Correlation 

(Correlat), Sum of Squares (SumofSqs), 

Inverse Difference Moment (InvDfMom), 

Sum Average (SumAverg), Sum Variance 

(SumVarnc), Sum Entropy (SumEntrp), 

Entropy, Difference Variance (DifVarnc), and 

Difference Entropy (DifEntrp). 

2.6. Machine Learning 

We explored the predictive power of 

various machine learning models for 

classification tasks (molecular characteristics 

prediction [luminal A, luminal B, Her2, Triple 

negative], p53 expression prediction, 

lymphovascular invasion, and lymph node 

metastasis) using a comprehensive dataset 

incorporating clinical, anatomical, and 

radiomics features. The dataset was 

meticulously curated to include a range of 
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variables, from basic clinical information to 

advanced radiomics markers derived from T1-

weighted, T2-weighted, early, and late post-

contrast T1, and DWI sequences. 

The data preprocessing pipeline was 

established to accommodate both categorical 

and numerical variables, ensuring the 

compatibility of data types for machine 

learning algorithms. Categorical variables 

were encoded using one-hot encoding to 

transform them into a machine-readable 

format. This encoding facilitates the handling 

of non-ordinal categorical data without 

imposing any ordinal relationship, which 

could mislead the learning process. Numerical 

variables and a wide array of radiomics 

features quantifying tumor heterogeneity and 

texture, were standardized to have a mean of 

zero and a standard deviation of one. This 

standardization is crucial for models sensitive 

to the scale of the data, ensuring that all 

features contribute equally to the model’s 

prediction capability. A stratified k-fold cross-

validation method was adopted, with five 

folds, to evaluate the models' performance and 

ensure that each fold was a good 

representative of the whole. Four machine 

learning models were assessed: Logistic 

Regression, Random Forest, Gradient 

Boosting, and XGBoost. Each model was 

evaluated on its ability to accurately classify 

the target variables categories based on the 

comprehensive feature set. Performance 

metrics such as accuracy, precision, recall, F1 

score, and the Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC) 

were calculated for each fold and averaged to 

gauge the models' overall efficacy. To further 

understand the models' decision-making 

processes, a feature importance analysis was 

conducted using the Random Forest classifier. 

This analysis highlights the most influential 

features driving the classification, providing 

insights into the biological and clinical 

significance of various predictors. The top ten 

features were visualized to demonstrate their 

relative importance in the model's predictive 

performance. All machine learning analyses, 

and preprocessing steps were conducted using 

Python. 

2.7. Statistical Analyses 

Statistical analyses were performed using 

the SPSS 22 demo package program. 

Descriptive analyses in the study presented 

numerical variables as mean, median, standard 

deviation, minimum-maximum values, and 

categorical variables as counts, ratios, and 

percentages. The normal distribution of the 

data was tested using the Shapiro-Wilk test. 

For intergroup comparisons, appropriate 

analytical tests, such as Kruskal-Wallis 

(including Dunn’s post hoc test), independent 

t-test, One-Way-ANOVA (including Tukey 

HSD test) and Mann-Whitney U tests 

(Bonferroni adjusted) were utilized according 

to the nature of the variables. P-values less 

than 0.05 were considered statistically 

significant. 

 

Results 

3.1. Descriptive statistics 

This study encompassed a total of 70 cases, 

with the ages of participants ranging from 28 

to 86 years. The average age was determined 

to be 55.19 years, with a standard deviation of 

13.31 years, reflecting a broad age distribution 

among the study population. The lesion 

volumes exhibited considerable variation, 

ranging from 429 mm³ to 125,896 mm³, and 

had an average volume of 11,504 mm³. 

Upon examining the histopathological and 

molecular characteristics, we found a diverse 

representation of tumor subtypes. Luminal A 

tumors accounted for 18.6% of the cases 
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(n=13), Luminal B for 38.6% (n=27), HER2-

overexpressed for 12.9% (n=9), and triple-

negative for 30.0% (n=21). This distribution 

underscores the molecular heterogeneity 

within the cohort. The grading of tumors 

revealed a near-equitable split, with 45.7% 

(n=32) classified as low-grade and 54.3% 

(n=38) as high-grade, paralleling the 

distribution of the Ki-67 proliferation index, 

where 45.7% exhibited low (ki-67-) and 

54.3% high (ki-67+) expression levels. 

Additional molecular markers provided 

further insights into tumor characteristics. The 

p53 protein showed negative expression in 

61.4% of cases (n=43), medium positive in 

17.1% (n=12), and strong positive in 21.4% 

(n=15). The Cerb-B2 (HER2) status was 

negative in 77.1% of cases (n=54) and positive 

in 22.9% (n=16). Estrogen receptor (ER) 

status was positive in 57.1% of cases (n=40) 

and negative in 42.9% (n=30), while 

progesterone receptor (PR) status was 

similarly distributed, with 51.4% positive 

(n=36) and 48.6% negative (n=34). 

Lymphovascular invasion was observed in 

41.4% of cases (n=29), and lymph node 

metastasis was present in 51.4% of the cohort 

(n=36), reflecting the aggressive nature of 

some tumors. The response to neoadjuvant 

therapy was evaluated in 30.0% of cases 

(n=21), with 47.6% (n=10) showing a positive 

response and 52.4% (n=11) showing no 

response, indicating a varied therapeutic 

efficacy. The majority of patients did not 

receive neoadjuvant therapy (n=49, 70.0%). 

Breast MRI evaluations revealed that the 

most common breast composition was type B, 

observed in 45.7% of cases (n=32), followed 

by type C in 28.6% (n=20), type D in 14.3% 

(n=10), and type A in 11.4% (n=8). Lesion 

localization predominantly occurred in the 

upper outer quadrant (57.1%, n=40), with 

multifocality and multicentricity rates noted at 

28.6% (n=20) and 14.3% (n=10), respectively. 

All lesions exhibited more diffusion 

restriction than the surrounding parenchyma, 

and 84.3% (n=59) demonstrated a 

heterogeneous contrast pattern with rapid 

early enhancement in 88.6% of cases (n=62).  

Lesion characteristics further included a 

majority with an irregular shape (85.7%, 

n=60), and the edges of the lesions were most 

often microlobulated (51.4%, n=36) or 

spiculated (42.9%, n=30). Satellite nodules 

were present in 42.9% of the cases (n=30). 

When considering the T1 and T2 signal 

characteristics, the lesions were 

predominantly isointense on T1 (64.3%, 

n=45) and exhibited a mix of signal intensities 

on T2, with 51.4% isointense (n=36), 31.4% 

hyperintense (n=22), and 17.1% hypointense 

(n=12). The contrast enhancement patterns 

were primarily heterogeneous (84.3%, n=59) 

or showed peripheral enhancement (10%, 

n=7), with rapid enhancement being the most 

common dynamic feature (88.6%, n=62). 
 Mean Std Count % 

Age 55.19 13.31   

Lesion Volume 1.15 0.21   

Molecular characteristics Luminial A   13 18.6% 

Luminal B   27 38.6% 

Her2 overexpressed   9 12.9% 

Triple (-)   21 30.0% 

Grade low   32 45.7% 

high   38 54.3% 

Ki-67 ki-67-   32 45.7% 

ki-67+   38 54.3% 

p53 negative   43 61.4% 
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medium positive   12 17.1% 

strong positive   15 21.4% 

cerb-2 Cerb-B2-   54 77.1% 

Cerb-B2+   16 22.9% 

ER ER-   30 42.9% 

ER+   40 57.1% 

PR PR-   34 48.6% 

PR+   36 51.4% 

Lymphovascular Invasion no   41 58.6% 

yes   29 41.4% 

Lymph Node Metastasis no   34 48.6% 

yes   36 51.4% 

Neoadjuvant response no   11 52.4% 

yes   10 47.6% 

No neoadjuvant therapy   49 70.0% 

Breast Pattern A   8 11.4% 

B   32 45.7% 

C   20 28.6% 

D   10 14.3% 

Background Contrast 

Enhancement 

1   32 45.7% 

2   19 27.1% 

3   17 24.3% 

4   2 2.9% 

Lesion Location Upper outer quadrant   40 57.1% 

Upper inner quadrant   16 22.9% 

Lower outer quadrant   8 11.4% 

Lower inner quadrant   3 4.3% 

Retro   3 4.3% 

BIRADS 4A   0 0.0% 

4B   0 0.0% 

4C   22 31.4% 

5   48 68.6% 

Shape round   9 12.9% 

oval   1 1.4% 

irregular   60 85.7% 

Edge sharp   3 4.3% 

veiled   0 0.0% 

microlobulated   36 51.4% 

indistinct   1 1.4% 

spiculated   30 42.9% 

Satellite no   40 57.1% 

yes   30 42.9% 

Multifocal no   50 71.4% 

yes   20 28.6% 

Multicentric no   60 85.7% 

yes   10 14.3% 

T1 Signal iso   45 64.3% 

hypo   1 1.4% 

hyper   24 34.3% 

T2 Signal iso   36 51.4% 

hypo   12 17.1% 

hyper   22 31.4% 
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Diffusion restriction less than parenchyma   0 0.0% 

equal to parenchyma   0 0.0% 

more than parenchyma   70 100.0% 

Contrast pattern homogeneous   4 5.7% 

contrast enhancing septa   0 0.0% 

heterogeneous   59 84.3% 

no contrast enhancement   0 0.0% 

peripheral contrast enhancement   7 10.0% 

Contrast enhancement slow   5 7.1% 

medium   3 4.3% 

rapid   62 88.6% 

Contrast enhancement curve type 1   4 5.7% 

type 2   50 71.4% 

type 3   16 22.9% 

Table 2: Demographic, anatomical and molecular characteristics of the cohort. 

 

3.2. Pairwise analyses of radiomics 

features 

Significant findings emerged across 

various target variables when comparing 

different aspects of the radiomics feature set. 

The visualization of radiomics feature set 

expression among the target variables can be 

found in the form of heatmaps in the 

supplementary figure material (supplementary 

figures 1-5). These findings were derived from 

statistical tests applied to assess the 

association of specific radiomics features with 

outcomes, including neoadjuvant response, 

molecular characteristics, p53 status, 

lymphovascular invasion, lymph node 

metastasis, and neoadjuvant response at 

different times (T1, T2, earlyT1, lateT1, 

DWI). For the target variable of neoadjuvant 

response using T1 modality, several features 

were significantly associated with the 

response. Variance of T1 signal 

(Variance_T1SignalA), Angular Second 

Moment 

(AngularSecondMoment_T1SignalA), 

Contrast (Contrast_T1SignalA), Sum of 

Squares (SumofSquares_T1SignalA), Inverse 

Difference Moment 

(InverseDifferenceMoment_T1SignalA), 

Sum Variance (SumVariance_T1SignalA), 

Sum Entropy (SumEntropy_T1SignalA), and 

Entropy (Entropy_T1SignalA) all showed 

significant differences between patients who 

did and did not respond to neoadjuvant 

therapy, with p-values ranging from 0.0067 to 

0.0486. In the context of molecular 

characteristics at T2, the mean T2 signal 

(Mean_T2SignalA) showed a significant 

difference between Luminal A and Triple 

Negative cases, with a p-value of 0.0329. 

Similarly, early T1 variance 

(Variance_earlyT1SignalA) differed 

significantly between Luminal A and Luminal 

B, indicating potential as a distinguishing 

feature.  

Regarding the p53 status, Skewness of the 

early T1 signal (Skewness_earlyT1SignalA) 

was notably different between cases with 

negative and strong positive p53 expression, 

with a p-value of 0.0291. Lymphovascular 

invasion also correlated with differences in 

early T1 Difference Entropy 

(DifferenceEntropy_earlyT1SignalA), 

suggesting its potential use in assessing 

invasion status. In late T1, features such as 

Mean, Inverse Difference Moment, Sum 

Average, and Difference Entropy 
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(Mean_lateT1Signala, 

InverseDifferenceMoment_lateT1Signala,Su

mAverage_lateT1Signala,DifferenceEntropy

_lateT1Signala) were significantly associated 

with neoadjuvant response, indicating that 

changes in these parameters could reflect 

response to therapy. The DWI signal offered 

several significant associations. For instance, 

the mean DWI signal (Mean_DWI) was 

significantly different between Luminal A and 

Triple Negative categories, and various 

features, including Contrast, Inverse 

Difference Moment, and Difference Variance 

(Contrast_DWI, 

InverseDifferenceMoment_DWI, 

DifferenceVariance_DWI), revealed 

significant differences across different levels 

of p53 expression. Particularly, the Inverse 

Difference Moment showed a significant 

difference between medium and strong 

positive p53 expression, with a p-value of 

0.0012. Lymph node metastasis showed 

significant associations with DWI features 

such as Skewness, Correlation, and Entropy 

(Skewness_DWI, Correlation_DWI, 

Entropy_DWI), with p-values indicating these 

features could be important markers of 

metastatic involvement. Lastly, the DWI 

signal also related significantly to neoadjuvant 

response, with Mean, Skewness, Contrast, 

Difference Variance, and Difference Entropy 

(Mean_DWI, Skewness_DWI, 

Contrast_DWI, DifferenceVariance_DWI, 

DifferenceEntropy_DWI) demonstrating 

significant differences between responders 

and non-responders, providing a radiomic 

signature of treatment efficacy. 

In the next step, we assessed the predictive 

value of machine learning models to predict 

the target variables. We did not assess 

neoadjuvant treatment response with the 

machine learning models, as the number of 

patients receiving neoadjuvant treatment was 

too small for reliable prediction modelling 

using these models. 

3.4. Prediction of molecular characteristics 

(Luminal A, Luminal B, Her2, Triple-

Negative) with radiomics feature set 

For the prediction of T1 molecular 

characteristics, which include Luminal A, 

Luminal B, Her2, and Triple-Negative classes, 

four machine learning models were evaluated: 

Logistic Regression, Random Forest, Gradient 

Boosting, and XGBoost. The models were 

assessed based on their mean accuracy, area 

under the curve (AUC), F1 score, precision, 

and recall, with a feature set that combined 

radiomic, clinical, and anatomical features. 

The results revealed a generally low predictive 

capability. XGBoost outperformed other 

models, showing the highest mean accuracy of 

45.71% and a mean AUC of 67.11%, 

indicating a better overall performance in 

distinguishing between the different molecular 

characteristics. The F1 score for XGBoost was 

also the highest at 43.26%, which is a 

harmonic mean of precision and recall, 

suggesting a balanced classification 

performance. XGBoost's precision and recall 

were the highest amongst the models, with 

values of 44.84% and 45.71%, respectively, 

suggesting a consistent ability to correctly 

identify the positive classes while maintaining 

a lower rate of false positives. In contrast, 

Logistic Regression and Gradient Boosting 

exhibited identical mean accuracies and mean 

recalls of 41.43%. However, Logistic 

Regression demonstrated a slightly higher 

mean AUC (64.54%) compared to Gradient 

Boosting (62.56%). Logistic Regression also 

had a marginally higher mean F1 score and 

precision of 40.51% and 42.59%, respectively, 

compared to those of Gradient Boosting. 

Random Forest, while not leading in any 

particular metric for T1 prediction, did display 

a competitive mean AUC of 68.01%, the 
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highest among the models, suggesting its 

strength in the probabilistic separation of 

classes. 

3.5. Prediction of p53 status with 

radiomics feature set 

The predictive performance of four 

machine learning models—Logistic 

Regression, Random Forest, Gradient 

Boosting, and XGBoost—was compared to 

determine the p53 status, utilizing a composite 

feature set encompassing radiomic, clinical, 

and anatomical data. Random Forest 

demonstrated superior mean accuracy 

(64.29%) and mean recall (64.29%) for T1 

prediction, indicating its robustness in 

correctly identifying the p53 positive cases. Its 

performance was also notable in the AUC with 

a mean score of 64.10%, suggesting a 

moderate trade-off between true positive rate 

and false positive rate compared to other 

models. Logistic Regression, while having a 

lower mean accuracy for T1 (61.43%), 

showed a competitive mean AUC of 53.93%. 

The model maintained a commendable 

balance between precision and recall, 

indicated by a mean F1 score of 57.00% and 

the highest mean recall of 61.43%, 

emphasizing its potential utility in scenarios 

where minimizing false negatives is critical. 

Gradient Boosting and XGBoost exhibited 

varied performance across different metrics. 

For early T1 prediction, Gradient Boosting 

outperformed all other models with the highest 

mean accuracy (64.29%) and mean AUC 

(69.67%), suggesting its efficacy in p53 status 

prediction using early T1. XGBoost, despite 

lower scores in some metrics, showed a 

respectable mean AUC of 62.39% for T1 

prediction and a balanced mean F1 score of 

56.22% for T1 late prediction, indicating its 

capability as a competitive alternative. For T2, 

Logistic Regression and Random Forest 

presented closely matched mean accuracies of 

58.57% and 60.00%, respectively, with 

Random Forest slightly leading in mean AUC. 

This suggests that Random Forest might be 

slightly more effective for T2 prediction, 

especially when considering its higher mean 

recall, which could be crucial in clinical 

decision-making. In the case of DWI 

prediction, Logistic Regression and XGBoost 

shared the highest mean accuracy (61.43%), 

while Logistic Regression also exhibited a 

strong mean AUC (63.46%), underscoring its 

potential as a reliable predictive tool for p53 

status in DWI scenarios. Overall, Random 

Forest and Gradient Boosting demonstrated 

strong performance in accuracy and AUC for 

T1 and T1 early prediction, respectively. 

Logistic Regression showed promise in terms 

of recall across the board, which might make 

it preferable in clinical settings where the cost 

of missing a positive case is high. 

3.6. Prediction of lymph node invasion 

with radiomics feature set 

In the next step we compared the 

performance of the predictive models in 

determining the likelihood of lymph node 

invasion using a combined set of radiomic, 

clinical, and anatomical features. Overall, the 

predictive capability was low to moderate. 

XGBoost emerged as the leading model, 

particularly for T1 and DWI prediction, with 

the highest mean accuracy (58.93% for T1 and 

64.29% for DWI) and mean recall (58.93% for 

T1 and 64.29% for DWI). This suggests 

XGBoost's superior capability to correctly 

identify cases with lymph node invasion 

compared to the other models. Furthermore, 

its mean AUC of 54.69% for T1 and 62.50% 

for DWI indicates a moderate ability to 

discriminate between positive and negative 

cases. For late T1 prediction, Random Forest 

was the standout model, achieving the highest 

mean accuracy (67.86%) and an impressive 

mean recall of 67.86%. These results 
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underscore the model's predictive strength, 

particularly in lymph node invasion detection 

using the late T1 modality. Random Forest 

also achieved the highest mean AUC (57.29%) 

for late T1, further demonstrating its 

effectiveness in this context. Gradient 

Boosting showed notable performance in the 

early T1 modality, with the highest mean 

accuracy (60.71%) and the highest mean AUC 

(62.50%), indicating its potential as an 

predictor of lymph node invasion. It also 

maintained a competitive mean F1 score 

across early T1 (59.02%) and late T1 (58.10%) 

stages, reflecting a balanced precision and 

recall. Logistic Regression, despite showing 

the lowest performance in terms of mean 

accuracy and mean AUC across all stages, 

provided a consistent recall rate, which could 

be valuable in clinical scenarios where 

identifying all positive cases is critical, even at 

the expense of increased false positives. The 

F1 scores, reflecting the balance between 

precision and recall, were generally highest for 

XGBoost and Random Forest, with XGBoost 

leading in T1 and DWI, and Random Forest in 

T1 late. This suggests that these models are 

better at maintaining a balance between the 

precision and recall, which is often crucial in 

a clinical setting. In summary, the analysis 

indicates XGBoost as the most consistent 

model for lymph node invasion prediction 

across different modalities, with Random 

Forest as a potential alternative, especially in 

the T1 late modality. 

3.7. Prediction of lymph node metastasis 

with radiomics feature set 

Further, we assessed lymph node 

metastasis prediction with the four machine 

learning models, using a dataset that 

incorporated radiomics features along with 

clinical and anatomical characteristics. The 

results indicated a moderate capability of 

prediction. Gradient Boosting showed 

exceptional performance, particularly in 

predicting T1 and DWI metastasis, with the 

highest mean accuracy of 67.86% and 62.50%, 

respectively. Its ability to discriminate 

between cases was also highlighted by the 

highest mean AUC of 70.04% for T1 and 

64.44% for DWI. Moreover, Gradient 

Boosting achieved the highest mean F1 score 

of 67.86% for T1 and 62.50% for DWI, 

indicating a strong balance between precision 

and recall, which is crucial for the reliable 

identification of metastatic lymph nodes. 

Logistic Regression and XGBoost both 

demonstrated a mean accuracy of 62.50% for 

T1, with XGBoost matching Logistic 

Regression’s mean recall of 67.21%. These 

models performed equally well in early T1 

prediction, each with a mean accuracy of 

62.50%, although XGBoost exhibited a 

slightly higher mean AUC. Random Forest, 

while not leading in mean accuracy, did show 

robust performance with a higher mean recall, 

especially for T2 (66.60%), suggesting its 

potential utility in scenarios where identifying 

as many positive cases as possible is a priority. 

The metrics indicate that while Gradient 

Boosting stands out for its overall 

performance in T1 and DWI prediction, 

XGBoost and Logistic Regression may offer 

advantages in early-stage lymph node 

metastasis detection due to their higher recall 

rates. However, for late T1 prediction, 

Gradient Boosting again takes the lead with 

the highest mean accuracy (64.29%) and mean 

recall (73.91%). 

 

Discussion 

The principal aim of this study was to 

meticulously explore the association between 

MRI texture characteristics of confirmed 

malignant breast masses and their 

corresponding histopathological and 

molecular features, alongside their response to 
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neoadjuvant treatments. Our comprehensive 

analysis revealed significant associations 

between MRI-derived texture features and 

intratumoral heterogeneity, reflecting in the 

variations of histopathological grading and 

molecular subtyping. Although our results 

revealed moderate predictive capability, these 

findings substantiate the hypothesis that MRI 

texture analysis holds valuable predictive 

power in assessing pathological outcomes and 

responses to neoadjuvant therapy. The 

implications of these results are profound, 

offering a promising avenue for enhancing 

personalized treatment strategies in breast 

cancer management. 

The use of radiomics in breast imaging is 

making significant progress in differentiating 

between harmful and non/less-harmful 

lesions, identifying tumor characteristics, and 

predicting the effectiveness of treatments and 

the likelihood of cancer returning [27,36,37]. 

Our research focused on further exploring 

these relationships, specifically looking at 

how MRI texture features can reveal the 

complexity within a tumor. This method 

shows potential in improving the accuracy of 

predicting disease outcomes and customizing 

treatment plans for breast cancer patients 

[13,38]. While radiomics and its combination 

with genomics hold great promise for creating 

more personalized medicine approaches, their 

full potential is yet to be realized. Key 

challenges include the need for independently 

verified data to prove their value in diagnosis 

and prognosis, the ongoing development 

towards practical clinical use, and overcoming 

obstacles such as incomplete patient data, 

fragmented data integration, and 

misunderstandings about data privacy and 

sharing [39–41]. Early detection and detailed 

analysis of breast cancer are critical for 

improving patient survival rates, particularly 

for those with early-stage, localized disease 

that can be cured [24,42]. Current methods for 

diagnosing breast cancer involve a 

combination of radiology, clinical 

examination, and tissue analysis, each with its 

own drawbacks, such as limited sensitivity, 

invasiveness, and the possibility of missing 

important lesion characteristics, which could 

lead to additional biopsies. 

Radiomics offers a new horizon in 

diagnostics by extracting unique, quantitative 

data from breast cancer imaging, potentially 

reducing the need for invasive biopsy 

procedures and enabling more personalized 

patient care. Our findings align with previous 

research, such as the work of Zhou et al. [43] 

and Xie et al. [44], who demonstrated the 

ability of DCE-MRI texture analysis to 

accurately distinguish between benign and 

malignant breast lesions. These advancements 

are crucial for improving the precision and 

reliability of breast cancer diagnosis. Further 

studies, including those by Li et al. [45] and an 

analysis of DWI-based radiomics [46], affirm 

radiomics' role in enhancing diagnostic 

accuracy, minimizing false positives, and 

augmenting traditional mammography. The 

adaptability of radiomics across different 

imaging techniques, such as demonstrated in 

tomosynthesis and ultrasound applications by 

Tagliafico et al. [47] and Luo et al. [48], 

showcases its versatility. In predicting 

molecular subtypes and treatment responses, 

research by Fan et al. [49], Xie et al. [50], and 

Demircioglu et al. [51] has shown that DCE-

MRI-based radiomic features, when combined 

with clinical data, strongly correlate with 

breast cancer's molecular characteristics. This 

collective evidence supports the non-invasive 

characterization of breast tumors using 

radiomics. 

Pre-surgery chemotherapy is becoming 

more common in the management of operable 

breast cancer, known for its benefits in 
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treatment response and reducing the chance of 

cancer returning [24]. Predicting complete 

response to treatment before surgery remains 

a challenge, typically assessed after the 

surgical removal of tumors [89,90]. Our study, 

along with others [6,19,29,49,52–55], 

suggests that MRI radiomic features can 

predict complete treatment response, 

indicating a move towards non-invasive 

treatment monitoring. Insights from 

Choudhery et al. [55] and Braman et al. [54], 

along with earlier research [19,49,56,57], 

highlight the importance of analyzing DCE-

MRI radiomic features before treatment to 

predict complete response to chemotherapy, 

suggesting these features could be important 

markers in breast cancer therapy. Our research 

adds to this by identifying a radiomic score 

that predicts response to chemotherapy, 

incorporating clinical and biological data to 

enhance predictions of treatment outcomes 

before they begin. With further validation, this 

could transform treatment planning by 

identifying patients less likely to benefit from 

certain therapies, avoiding unnecessary 

treatments. 

The status of axillary lymph nodes is 

crucial for determining breast cancer 

prognosis [58,59]. Radiomics has shown 

potential in predicting lymph node 

involvement, with studies creating predictive 

models that combine radiomic and clinical-

pathological data for more accurate patient 

classification [60–62]. These models have 

proven effective across various imaging 

methods, indicating high diagnostic accuracy 

[60–62]. However, the broad applicability of 

radiomics across different patient populations 

and imaging settings remains a challenge. 

Research by Cattell et al. [63] comparing deep 

learning features with traditional radiomics 

highlights the potential for greater model 

adaptability with deep learning, especially in 

handling various imaging resolutions. This 

underscores the evolving synergy between 

machine learning and deep learning in 

radiomics, where combining approaches could 

lead to stronger predictive models. 

The risk of breast cancer recurrence is a 

major concern, with radiomics offering new 

avenues for predicting this risk. This could 

significantly change treatment strategies, 

ensuring patients at low risk avoid 

unnecessary treatments while those at high 

risk receive adequate intervention [64]. Recent 

studies using breast MRI have linked radiomic 

features from pre-treatment DCE-MRI with 

recurrence risk in invasive breast cancer [65–

67]. For instance, Park et al. [65] and 

Mazurowski et al. [67] identified radiomic 

signatures associated with different survival 

outcomes. Our research builds on these 

findings, showing that combining MRI 

radiomic features with data from normal 

breast tissue can improve predictions of 

recurrence risk, suggesting the broader breast 

environment plays a critical role in recurrence, 

potentially even more so than the tumor itself. 

While MRI provides a broad set of 

imaging features for prediction modelling, 

advances in ultrasound radiomics, as seen in 

the work of Xiong et al. [68] and Yu et al. [69], 

have also led to the development of models for 

predicting disease-free survival in invasive 

breast cancer, enhancing clinical decision-

making. Additionally, Dasgupta et al. [70] 

demonstrated the predictive power of 

quantitative ultrasound radiomics in 

identifying patients at risk of recurrence, 

achieving an accuracy of 82%. In 

mammography, the model developed by Mao 

et al. [71] incorporating radiomic features 

shows significant promise in breast cancer risk 

prediction, reinforcing the potential of 

integrating radiomics into regular imaging 

practices to enhance prognostic capabilities. In 
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summary, while integrating radiomic features 

into clinical practice offers exciting 

possibilities, there are complexities in 

achieving routine clinical adoption. Steps such 

as ensuring consistent results across various 

datasets, standardizing the process of feature 

extraction, and harmonizing imaging 

protocols are vital. Addressing these 

challenges is key to enabling radiomics to 

refine and personalize breast cancer 

management further. 

Our study brings to light both strengths and 

limitations. We carefully selected our 

participants using well-defined criteria, 

ensuring our study group was both relevant 

and consistent. The collaboration with the 

Department of Pathology enriched our 

analysis with a diverse range of data, including 

morphological, molecular, and radiomic 

insights. By employing a 1.5 Tesla MRI 

system, we captured high-quality images that 

revealed intricate texture details, enabling a 

thorough analysis. Our adherence to the 

established Bloom-Richardson grading 

system and a uniform approach to 

immunohistochemical staining ensured the 

reliability of our histopathological data for 

comparison with MRI features. The use of 

MaZda 4.6 software for texture analysis 

provided us with detailed radiomic data, and 

the application of sophisticated machine 

learning models allowed us to investigate the 

potential of these features in identifying 

different clinical and molecular aspects of 

breast cancer. Our study's statistical rigor, 

supported by a selection of tests appropriate 

for our data, lent credibility to our conclusions. 

However, the study's relatively short duration 

limited our ability to gather long-term data and 

observe extended outcomes. 

On the downside, the study's sample size 

of 70 cases, while adequate for initial 

exploration, may fall short of providing a basis 

for broader generalizations. Being a 

retrospective study, it is naturally prone to 

biases typical of such research designs, 

including selection bias and potential impacts 

from factors not measured in the study. The 

research being conducted in a single 

institution could mean the findings are specific 

to that environment, potentially limiting their 

broader applicability. The absence of 

prospective validation leaves questions about 

the real-world effectiveness of our predictive 

models. The fact that only some participants 

underwent neoadjuvant treatment may affect 

the universality of those specific findings. Our 

reliance on data from post-surgery 

histopathology restricts the use of radiomic 

features for making real-time, pre-surgical 

decisions. Despite a consistent MRI protocol, 

individual differences in patient physiology 

and timing of scans could introduce variability 

in the imaging results. External validation, 

particularly in multi-center studies, is essential 

to confirm the reproducibility and reliability of 

our findings. 

 

Conclusion 

In summary, while our study enriches the 

understanding of how MRI radiomics features 

correlate with breast cancer characteristics, 

further research is needed to truly establish 

these findings' clinical utility. Expanding the 

scope to include larger, more diverse cohorts 

and employing prospective study designs will 

be crucial for moving beyond the preliminary 

insights provided here. 
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