ESIC2024, Vol 8.2, S1 Posted: 15/07/2024

Harmonizing Insights: LR-FFT Feature Extraction for
Alzheimer’s and Autism Spectrum Disorder Detection in
EEG Signals

Nisreen Said Amer', Samir Brahim Belhaouari’, Othmane BouhaliZ, Dr.
Abdelfatteh EL Omri?

'College of Science and Engineering Hamad Bin Khalifa University Doha, Qatar
IDivision of Arts and Science Texas A& M University Doha, Qatar
3Research Section, Surgery Department Hamad Medical Corporation, Doha, Qatar
Email: niam27832@hbku.edu.qa

Abstracts

Alzheimer’s Disease (AD) and Autism Spectrum Disorder (ASD) represent two distinct but
equally impactful challenges in the field of neurology and cognitive health. AD is a
degenerative neurological condition characterized by its progressive nature, typically affecting
individuals in later stages of life. The hallmark features include cognitive impairment, mem-
ory deterioration, and alterations in behavior. In contrast, ASD is a developmental disorder
typically diagnosed in childhood, marked by difficulties in social interaction, communication,
and repetitive behaviors. This paper explores the potential of the time-frequency feature
extraction model known as the Left-Right Fast Fourier Transform (LR-FFT) in the context of
these two disorders. While AD and ASD differ significantly in their onset, presentation, and
demographic affected, both necessitate early and accurate diagnosis to enable timely
intervention and tailored treatment strategies. Our research yields promising results, with
classification accuracies reaching 88.26% for AD and 99.86% for ASD, demonstrating the LR-
FFT’s potential to enhance diagnostic accuracy. By contributing to improved differentiation
between these complex neurological conditions, this work aims to advance our understanding
and management of AD and ASD, ultimately benefiting patients, their families, and healthcare
practitioners.

Keywords: Alzheimer’s Disease, Autism Spectrum Disor- der, EEG, Left-Right Fast Fourier Transform
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that progressively affects the electrical
activities of the brain, leading to a decline in cognitive functions [1]. It is the primary cause of
dementia and is commonly seen in individuals aged 65 and above, with the incidence rate
increasing significantly with age. Currently, there are approximately 50 million individuals
affected by neurocognitive disorders, and this number is projected to surpass 100 million by
2050.

On the other hand, Autism Spectrum Disorder (ASD) is a neurodevelopmental condition
identified by challenges in communication and interaction. The diagnosis of ASD is chal-
lenging due to the absence of a specific medical test. Doctors rely on developmental history and
behavioral observations to diagnose ASD. Early identification of ASD, ideally before the age of
18 months, can significantly improve long-term outcomes for individuals. However, many
children receive a diagnosis much later, leading to delayed access to necessary support and
interventions. The global prevalence of ASD is estimated to be around 1 in 100 children, but this
number may be underestimated due to limited data from low and middle- income countries.

Diagnosing and treating neurological damage caused by these disorders poses significant
challenges. Early detection is essential in delaying symptoms’ onset and allowing for timely
intervention.

In neurophysiology, electroencephalography (EEG) has emerged as a valuable tool for
diagnosing neurological disor- ders to develop effective interventions. EEG is a non-invasive,
cost-effective, and portable technique that measures the brain’s electrical activity. By analyzing
EEG signals, researchers can delve into the intricate workings of the brain and gain a deeper
understanding of its dynamics and abnormalities in various neurological disorders [2].

This study explores a unique approach to extracting time- frequency features from complex
electroencephalogram (EEG) recordings and converting them into input images for a deep
learning (DL) network. The DL model utilized in this study was specifically optimized to address
the research focus and trained using ground truth values corresponding to each image. The model
underwent cross-validation to assess the classification accuracy. The paper is structured as
follows: Section Il provides a comprehensive review of relevant literature and studies in the field,
while Section Il outlines the materials and methods employed. The obtained results are
presented in Section 1V, and an in-depth discussion of the findings is provided in Section V.
Finally, Section VI concludes the study and suggests avenues for future research.

2. Literature Review

The researchers in study [3] gathered resting-state EEG data from individuals diagnosed with
mild cognitive impairment (MCI), Alzheimer’s disease (AD), and healthy controls (HC). They
employed functional connectivity metrics derived from the EEG recordings to serve as input for
a convolutional neural network (CNN).The CNN model achieved accuracies of 93.42% and
98.54% for MCI and AD, respectively. This study demonstrated the importance of considering
the spatial attributes of EEG in AD classification, but it did not directly compare AD and MCI.
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Similarly, the authors of [4] conducted a study involving individuals with Alzheimer’s Disease
(AD), Mild Cognitive Impairment (MCI), and healthy controls (HC), where EEG sig- nals were
collected. The researchers employed a Convolutional Neural Network (CNN) for a three-class
classification task, utilizing images representing EEG’s Power Spectral Density (PSD) features
as input. Despite achieving an accuracy rate of 83.33%, which surpassed the performance of
conventional machine learning methods, the accuracy remained relatively modest.

Another model by authors of [5] presents a cascade neural network that integrated EEG and
motion data for the classifica- tion of Alzheimer’s Disease (AD), Mild Cognitive Impairment
(MCI), and Healthy Controls (HC). LR-FFT demonstrates an accuracy of 91.70%. The study
used attention mechanisms and graph convolutional networks to analyze spatiotemporal data
(ST-GCN). This technique facilitated automatic feature extraction from EEG and gait data,
thereby minimizing the necessity for manual intervention. However, it is worth noting that the
fusion data employed for distinguishing between AD and MCI posed challenges in terms of
reproducibility.

In the investigation by authors of [6], statistical features, frequency, and Lyapunov index were
extracted to classify AD, MCI, and HC, achieving an accuracy of 97.50% with CNNs. While the
study introduced a novel analysis method centered on task-state EEG, it is important to note that
the data collection was confined to three self-defined electrode positions, potentially limiting the
representation of the actual conditions experienced by individuals with AD and MCI.

Using time-dependent power spectrum descriptors for CNN input, the authors of [7] achieved an
accuracy of 82.30% in a dataset of 64 AD, MCI, and HC people. However, the accuracy for HC
was lower (75

The authors of [8] developed an AlexNet-based classifi- cation model using EEG data from
dementia patients. They transformed the EEG data into time-frequency graphs using continuous
wavelet transform and achieved a three-class clas- sification accuracy rate of 98.90%. However,
converting EEG into RGB images was complex and involved significant human intervention.

Switching to the realm of Autism Spectrum Disorder (ASD), resting-state fMRI (rs-fMRI) has
been instrumental [9] [10] for classifying Autism Spectrum Disorder (ASD). Researchers using
the ABIDE dataset, such as Abraham et al. [11], applied Support Vector Machine (SVM)
techniques to achieve 66.9% accuracy, 53.2% sensitivity, and 78.3% specificity for ASD
classification. Deep learning approaches were also explored, with one study reaching 70%
accuracy, 74% sensitivity, and 63% specificity using a classifier [12]. Furthermore, a Convo-
lutional Neural Network (CNN) model attained an accuracy of 70.22% in identifying ASD [13].

In a different approach, Graph Fourier transformation com- bined with SVM outperformed other
methods in rs-fMRI analysis [14]. Hybrid features from EEG data, utilizing Short Fourier
transform and SVM, achieved 96.44% accuracy in automated ASD identification [15]. Another
study combined EEG and eye-tracking data, selecting relevant features using SVM and achieving
an 85.44% classification accuracy rate [16]. These approaches enhance our understanding of
ASD classification using neuroimaging techniques.
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These studies showcase various approaches and achieve- ments in the EEG-based classification
of neurodegenerative conditions. While they have achieved promising results, there are still
challenges to overcome, such as accurately diagnosing MCI and reducing human intervention in
the research process. Future research may explore alternative methods for feature quantification
and consider multimodal data integration to improve the classification accuracy associated with
AD and ASD.

3. Materials And Methods

Our methodology involves a multi-stage process, incorporat- ing the acquisition of EEG datasets
related to Alzheimer’s and Autism brain disorders, signal preprocessing, Left-Right Fast Fourier
Transform (LR-FFT) analysis for generating 2D im- ages, deep learning (DL) utilizing pre-
trained neural network models on LR-FFT images of brain disorders. The evaluation of our
models is conducted using performance metrics. The entire workflow is illustrated in Figure 1,
highlighting the sequential steps in our approach.

A. EEG Datasets

The Alzheimer’s dataset includes EEG resting state record- ings with closed eyes from a total of
88 subjects [17]. The participants were divided into three groups: 36 individuals with
Alzheimer’s disease (AD), 23 with Frontotemporal Dementia (FTD), and 29 healthy subjects
(CN). A team of skilled neurologists obtained The EEG recordings from AHEPA Gen- eral
Hospital of Thessaloniki. A Nihon Kohden EEG 2100 clinical device with 19 scalp electrodes
and two reference electrodes was used for recording. Individuals have a seated posture while
keeping their eyes shut during the recordings.
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Fig. 1: Flowchart depicting the LR-FFT for classifying brain disorders from EEG signals using
LR-FFT analysis.

The skin impedance was examined, and the sampling rate was configured to 500 Hz. The
recordings lasted 13 minutes for the AD group, 12 minutes for the FTD group, and around 14
minutes for the CN group. Around 486 minutes of AD recordings, 277 minutes of FTD
recordings, and 402 minutes of CN recordings were gathered in the dataset.

The Autism (Rs-fMRI) dataset used in this study [18] is the ABIDE dataset that consists of 41
cases of both Autism Spec- trum Disorder (ASD) and neurotypical control (NC) cases.

B. Preprocessing

The Alzheimer’s dataset EEG recordings were preprocessed by applying a Butterworth band-
pass filter, re-referencing the signals, and using the Artifact Subspace Reconstruction (ASR)
technique to eliminate problematic data segments. Independent Component Analysis (ICA) was
then performed, and ICA components categorized as either ’eye artifacts” or ”jaw arti- facts”
were automatically rejected [17]. It is important to note that some recordings’ artifacts resulting
from eye movement remained despite the resting state and closed eyes condition. Before the
analysis of the Autism (Rs-fMRI) dataset, the collected raw data underwent preprocessing to
reduce noise and artifacts. The DPARSF MATLAB toolkit [19] was em- ployed for
preprocessing and analysis. The fMRI experiment utilized images weighted by the T2*
relaxation time, which captures the decay of spins in the transverse plane. This allows monitoring
of the changes in brain oxygenation over time. BOLD contrast was used to calculate the
hemoglobin ratio in the blood, providing insights into the metabolic requirements of engaged
neurons. To address potential issues such as spikes in the fMRI data resulting from electrical
instability, the first five volumes were rejected, and only volumes with good equi- librium were
retained. Time correction was performed through slicing to account for discrepancies in voxel
acquisition time, and realignment was used to account for variations in head movements. Spatial
normalization was applied to standardize the brain’s shape, size, and alignment across
participants. The functional images were then normalized and enhanced with spatial smoothing.
The automated anatomical labeling (AAL) technique was used to delineate 116 regions of
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interest (ROIs) in the brain [20]. The default mode network (DMN) was selected as it exhibits
robust brain neuronal activity in individuals with ASD during wakeful rest.

4. Image Dataset Creation

In our approach, the Left-Right Fast Fourier Transform (LR- FFT) rests upon the powerful Fast
Fourier Transform (FFT) equation;

:
X() = x(n) - eFN )
n=0
where
X(K) is the kth frequency component of the signal in the frequency domain,
x(n) is the nth sample of the signal in the time domain,
N is the total number of samples in the signal,
j is the imaginary unit (j2 = —1).

Our method employs a dual sliding window technique for feature extraction from the input
signal. This distinctive approach involves using two sliding windows, each serving a specific
purpose. The first sliding window focuses on the original signal segment, while the second is
dedicated to a shifted segment version. By employing these two windows, we gain a
comprehensive perspective on the signal’s temporal characteristics following the equation:

S e
XU g)=min __ x(De % 1 -1 o0
Tfﬂ he—ji2on lfu—e< < v+ 3}1
—za |
(2)
where

X(t) represents a signal or function of time t.

e—j2nft represents a complex exponential function.
1(w—e<t<v+g)equals 1 when t is within interval

(w — &, v+ ¢) and 0 otherwise.

| - | denotes the absolute value of a complex number

€ is a parameter representing a small positive value.
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Within this framework, we compute the Fast Fourier Trans- form (FFT) for the original and
shifted windows, extracting valuable frequency domain information. The significance of this
dual-window approach lies in its ability to capture nu- anced variations in the signal’s frequency
characteristics across different temporal viewpoints.

Following the computation of FFT values for both windows, we calculate the minimum values
of these FFT results. This step highlights the essential commonalities and differences be- tween
the original and shifted signal segments. Subsequently, we leverage these minimum values to
create composite repre- sentations mapped onto the red, green, and blue channels to generate
RGB images. These RGB images offer a visually intuitive representation of the signal data,
facilitating the extraction of intricate features and patterns. By combining the insights derived
from the dual sliding windows and creating RGB images, our method provides a robust
framework for comprehensive signal analysis and feature extraction.

5. Classification

Deep learning architectures such as GoogLeNet, SqueezeNet, AlexNet, and ResNet have
significantly contributed to various computer vision tasks, including image classification, Figure
2.
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Fig. 2: CNN Layers [21]

GoogLeNet, also known as the Inception network, intro- duced the concept of the Inception
module. Including parallel convolutional layers with different filter sizes in these modules allows
the network to effectively capture and analyze features at various scales. The network can
identify and understand specific details and comprehensive contextual information by
incorporating multiple filter sizes. This multi-scale approach enhances the network’s ability to
extract meaningful features and improves its overall performance. SqueezeNet, however, focuses
on reducing the number of parameters and model size without sacrificing accuracy. It achieves
this using 1x1 convolutions and a fire module combining 1x1 and 3x3 convolutions. AlexNet,
one of the pioneering deep learning architectures, popularized convolutional neural networks
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(CNNs) for image classification. It demonstrated the effectiveness of deep learn- ing on large-
scale image classification tasks and significantly outperformed previous methods.

ResNet, unveiled in 2015, tackles the issue of training intense neural networks. The network can
capture and learn incremental transformations by focusing on the residual in- formation. This
approach allows the network to refine the difference between the input and output rather than
solely focusing on learning the desired underlying mapping. This utilization of residual
connections enhances the network’s performance and convergence during the learning process.
ResNet has demonstrated top-tier performance across different image classification benchmarks.

Our methodology employed a modified ResNet-18 archi- tecture for image classification,
leveraging PyTorch’s neural network (NN) module. The ResNet-18 model, known for its
efficacy in deep learning tasks, was utilized in a pre- trained state to capitalize on its already
learned features from extensive datasets. This choice aids in the robust feature extraction
necessary for accurate image classification. To tailor the network to our specific problem, we
adapted the fully con- nected (FC) layer of the ResNet-18 model. This customization involved
replacing the original fc layer with a sequential layer consisting of a linear transformation
(mapping from 512 to 128 nodes), a Rectified Linear Unit (ReLU) activation function to deal
with non-linearity, a dropout layer with a probability of 0.4 to prevent overfitting, and another
linear transformation to match the number of classes (numClass) in our dataset. The forward
method defines the data flow through the network. For optimization purposes, the Adam
optimizer was employed with a learning rate set to 0.001, and the cross-entropy loss function
was utilized as the criterion, specifically suitable for tasks involving multi-class classification.
Additionally, we implemented a learning rate scheduler, ReduceLROnNPIlateau, to dynamically
adjust the learning rate based on the model’s performance, enhancing the training efficiency.

To assess the effectiveness of our model, we employed well-established evaluation methods,
primarily relying on Con- fusion Matrices. These matrices allow us to visualize the relationship
between predicted and true class labels within the test dataset.

Within the context of confusion matrices, four distinct categories describe each prediction:

. True Positive (TP): This category corresponds to in- stances where our model accurately
predicts a sample as positive when it genuinely belongs to the positive class.

. True Negative (TN): Conversely, the model correctly identifies samples as negative
when they indeed belong to the negative class.

. False Positive (FP): In cases where the model incorrectly predicts samples as positive
when they are, in fact, negative.

. False Negative (FN): Conversely, the model erroneously categorizes samples as
negative when they are positive.

These definitions form the basis for computing accuracies for each class using the following
formula:
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IV ol
Accuracy = ()
IFrTrFF THOIN T I

In our evaluation process, we adhered to a standard train-test split, where 80% of the subjects’
data were used to train the model, and the remaining 20% were reserved for testing. This
approach ensures that the model’s performance is assessed on unseen data, allowing us to gauge
its generalization capabil- ities and real-world applicability. This train-test split ratio of 80/20
was chosen to balance training data sufficiency and the need for robust testing on an independent
dataset.

This comprehensive evaluation framework enables us to assess the model’s ability to make
accurate classifications thoroughly. It provides valuable insights into its performance, all while
maintaining a standard train-test split methodology.

6. MODEL PERFORMANCE

During the experiment, 18 patients from the Alzheimer’s Dataset were used. 10 with Alz and 5
as a Control group (CN). A sliding window approach of 1 second with a 0.5-second overlap was
employed to form RGB images. The analysis was conducted over 50 epochs, each representing
a complete pass through the training data with a batch size of 16. Our model performances are
presented in Tables I, 11, 1ll, and 1V, and were as follows: Resnetl8 achieved an accuracy of
88.26%, GoogleNet achieved 86.82%, SqueezeNet reached 85.85%, and AlexNet showed an
accuracy of 78.05%. These results reflect our model’s ability to distinguish between AD and CN
patients based on EEG data as presented in Figure 3.

Confuslon Matrlx Confuslon Matrlx
gu.,h ;;;.‘ 45“,\ gu— o 0% 408%
Targst Clazs & o
Target Class
(a) Confusion Matrix Alzheimer (b) Confusion Matrix BOLD

Fig. 3: Confusion Matrices from the best models: (a) Alzheimer’s dataset; (b) BOLD

390 Evolutionary Studies in Imaginative Culture



Harmonizing Insights: LR-FFT Feature Extraction for Alzheimer’s and Autism Spectrum Disorder Detection in EEG Signals

For the Autism Brain Imaging Data Exchange (ABIDE) dataset, a total of 36 patients with 18
diagnosed with Autism Spectrum Disorder (ASD) and 18 neurotypical (N) control subjects. In
this case, we worked with fMRI signals with a sliding window of 50 data points and an overlap
of 25 and conducted our analysis across 50 epochs. The model performance on this dataset was
exceptional, as presented in Tables V, ??, and ??. Resnet18 achieved an accuracy of 99.86%,
GoogleNet reached 100%, and SqueezeNet and AlexNet achieved a perfect accuracy of 100%.
These outstand- ing results indicate our model’s effectiveness in distinguishing between ASD
and neurotypical individuals based on fMRI signals.

Our model demonstrated strong performance in the Alzheimer’s and ABIDE datasets,
showecasing its potential for accurately classifying patients and subjects in different medical
contexts. The ABIDE dataset, in particular, yielded exceptional results, highlighting the model’s
proficiency in autism spectrum disorder diagnosis based on fMRI signals.

TABLE I: Classification Report Alz- Resnet

Clazs Precizion Recall Fl-Score Support
AD 0.831 0931 0.882 372
CH 0931 0.843 0.881 672
Accuracy 0.883 1244
Macro Ave 0.883 0.891 0.380 1244
Weighted Avg 0891 0.883 0.380 1244
Validation Accuracy 0.883 BE3%

TABLE II: Classification Report Alz- Googlenet

Clazs Precizion Recall Fl-Score  Support
ATy 0842 0.881 0.362 572
CH 0.501 0.851 0.331 672
Accuracy 0.8681 1244
Macro Avg 0.3581 0.2631 0.8881 1244
Weighted Avg 03681 0.2631 0.8581 1244
Validation Acenracy 0.8581 835.31%

TABLE IlI: Classification Report Alz- Squezenet

Classz Precizion Recall Fl-Score  Sopport
ATy 0832 0.881 0851 32
CH 0891 (842 0.871 672
Accuracy 0880 1244
Maero Ave 0.R&0 0860 0.860 1244
Weighted Ave 0.R&0 0860 0.860 1244
Validation Aceoracy 08385 35.85%
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7. Comparative Analysis

Our study delved into the classification of EEG and fMRI images for AD and ASD, employing
a customized ResNet-18 model and CNNs. Our model achieved an accuracy of 88.26% for AD
and 99.86% for ASD. These results signify the potential of our approach for precise disease
classification.

TABLE IV: Classification Report  Alz-Alexnet

Class Precision  Recall F1-Score  Support
AD 0.78 0.72 0.75 572

CN 0.78 0.83 0.80 672
Accuracy 0.7805 1244
Macro Avg 0.7805 0.7805  0.7805 1244
Weighted Avg 0.7805 0.7805  0.7805 1244
Validation Accuracy 0.7805 78.05%

TABLE V: Classification Report ABIDE- Googlenet

Class Precision  Recall F1-Score  Support
AD 1.000 1.000 1.000 751

CN 1.000 1.000 1.000 659
Accuracy 0.9986 1410
Macro Avg 1.000 1.000 1.000 1410
Weighted Avg 1.000 1.000 1.000 1410
Validation Accuracy 0.9986 99.86%

Comparatively, our model’s performance closely aligns with state-of-the-art methods in a
neuroimaging-based classification listed in Table VI. In AD classification, Duan et al. [3] utilized
resting-state EEG data and achieved recognition accuracy rates of 93.42% for Mild Cognitive
Impairment (MCI) and 98.54% for AD using a convolutional neural network (CNN). They
emphasized the importance of spatial attributes in EEG- based AD classification. leracitano et
al. [4] employed two- dimensional grayscale power spectral density (PSD) images of EEG and
achieved an accuracy rate of 83.33% for a three-class classification model. Our model,
outperforming traditional machine learning techniques, showcases competitive results in AD
classification.

In the context of ASD, our model surpassed the performance of some previous studies. Abraham
et al. [11] applied Support Vector Machine (SVM) techniques to achieve 66.9% accuracy in
classifying ASD using resting-state fMRI data. Aghdam et al. [13] introduced a Convolutional
Neural Network (CNN) model that attained an accuracy of 70.22% in identifying ASD. Our
model’s accuracy rate of 99.86% for ASD classification outshines these results, highlighting its
potential for enhancing ASD classification accuracy.
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TABLE VI: State of the Art in AD and ASD Classification

Stady Tiafazet Fethodoloey Accaracy K&y Fnding:
(%)
3300
Milstiadous et al.  Alvheimer FIR. filtermz Gradient 3067 Faature Elmination throngh mpor-
[22] Boosting Dacision Traes tance of ranking.
Teracitano et al Alzhemner EEG =igmals from AD, 85333 Outperformed traditionzl BT, but
[4] MCL and HC. CWN with with relatively low accuracy.
PED mmazges
Tou et al T3] Alzhemmer EEGand gat daa for AL, U170 Infroduced attention-bazed
MCI, and HC. Cascade spatictemporal network,
neural natwork
Arom at al [7] Alzhemmer Time-dependent  powar 5230 Dhfferantiated AD, MCT, and HC,
spectrom descriptors with but lower HC accuraey.
CH
ﬁlﬁzham et al ABIDE ABIDE dataset with VA 860 Teed rs-IWFT for ASD clasaihes-
Hon.
Hemeafald et al ARIDE Deep Jeammg 70 Explored desp leaming approaches
[12] for ARD.
Aghdam et al AFBIGE CHE T0ZZ Achieved hugh aceuracy in idenhi-
[13] fying ASD.
Brahum et 2l [19] ABIDE Graph Fourer tensforma- - CUhutperformed other methods m r=-
tion combined with SV MRT analysis.
Bayem et al. [I3]  ABIDE Short Founer fransform 5644 Auntomated ASD idantificabon with
and SV hyvbrid faatures.
Kang ot al 18] ABIDE Combmed FEG and ave- 3544 Salectad relavant features for ASD
tracking data wrth 3WVM identification.
Our Model Alzhemmer LE-FFT for I Boarr B8I6
Classrfication AT CH us-
mg Resmet and CNNz
Our Model ABIDE LE-FFT uwsmz BoldSiz- 9986
nals with CHINs

In conclusion, our LR-FFT method marks a significant ad- vancement in neuroimaging research.
These findings underline the potential of our approach in aiding early disease diagnosis and
intervention. Additionally, insights from previous classi- fiers and innovative techniques
emphasize the ongoing efforts to improve the accuracy and efficiency of neuroimaging-based
classification systems.

8. Conclusion

In this study, our approach leverages the dual-window FFT technique to extract intricate
frequency domain information from EEG data, offering a new perspective for feature
representation. By computing the minimum values of FFT results from both original and shifted
windows, we generated RGB images to facilitate comprehensive feature extraction.

The results of our experiments on two distinct datasets, one for AD and another for ASD,
demonstrated the effectiveness of the LR-FFT method. Achieving an accuracy of 88.26% for
AD and an astonishing 99.86% for ASD on the respective datasets, our approach outperformed
state-of-the-art methods. These promising results suggest the potential of LR-FFT as a valuable
tool in the early detection and classification of neurodegenerative disorders. While our LR-FFT
approach shows great promise, several avenues exist for future research and improvement. First,
our study focused on two specific disorders, AD and ASD. Expanding the scope to include a
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broader range of neurological conditions would enhance the versatility and applicability of the
method.

Additionally, further investigation is needed into the inter- pretability of the RGB images
generated by our approach. Understanding these images’ specific features and patterns could
provide valuable insights into the underlying neurolog- ical processes.

Moreover, our study lacked an analysis of the computational resources required for LR-FFT
compared to other feature extraction methods. Evaluating the computational efficiency of our
approach would be beneficial, especially for real-time applications or resource-constrained
environments.

Furthermore, exploring the potential for LR-FFT in multi- modal data fusion, such as combining
EEG with other neu- roimaging modalities like fMRI or MEG, could lead to more comprehensive
diagnostic tools.

In conclusion, our study demonstrates the power of LR- FFT in EEG-based classification tasks
for AD and ASD. However, ample room remains for further research and refine- ment, including
expanding the range of disorders considered, enhancing interpretability, evaluating
computational efficiency, and exploring multi-modal data integration. These endeavors hold the
promise of advancing the field of neurodegenerative disorder detection and classification.
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