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Abstracts 

Alzheimer’s Disease (AD) and Autism Spectrum Disorder (ASD) represent two distinct but 

equally impactful challenges in the field of neurology and cognitive health. AD is a 

degenerative neurological condition characterized by its progressive nature, typically affecting 

individuals in later stages of life. The hallmark features include cognitive impairment, mem- 

ory deterioration, and alterations in behavior. In contrast, ASD is a developmental disorder 

typically diagnosed in childhood, marked by difficulties in social interaction, communication, 

and repetitive behaviors. This paper explores the potential of the time-frequency feature 

extraction model known as the Left-Right Fast Fourier Transform (LR-FFT) in the context of 

these two disorders. While AD and ASD differ significantly in their onset, presentation, and 

demographic affected, both necessitate early and accurate diagnosis to enable timely 

intervention and tailored treatment strategies. Our research yields promising results, with 

classification accuracies reaching 88.26% for AD and 99.86% for ASD, demonstrating the LR-

FFT’s potential to enhance diagnostic accuracy. By contributing to improved differentiation 

between these complex neurological conditions, this work aims to advance our understanding 

and management of AD and ASD, ultimately benefiting patients, their families, and healthcare 

practitioners.  

 

Keywords: Alzheimer’s Disease, Autism Spectrum Disor- der, EEG, Left-Right Fast Fourier Transform 

(LR-FFT), Signal Processing, Feature Extraction, Neurodegenerative Disorders, Classification, Diagnostic 
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1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder that progressively affects the electrical 

activities of the brain, leading to a decline in cognitive functions [1]. It is the primary cause of 

dementia and is commonly seen in individuals aged 65 and above, with the incidence rate 

increasing significantly with age. Currently, there are approximately 50 million individuals 

affected by neurocognitive disorders, and this number is projected to surpass 100 million by 

2050. 

On the other hand, Autism Spectrum Disorder (ASD) is a neurodevelopmental condition 

identified by challenges in communication and interaction. The diagnosis of ASD is chal- 

lenging due to the absence of a specific medical test. Doctors rely on developmental history and 

behavioral observations to diagnose ASD. Early identification of ASD, ideally before the age of 

18 months, can significantly improve long-term outcomes for individuals. However, many 

children receive a diagnosis much later, leading to delayed access to necessary support and 

interventions. The global prevalence of ASD is estimated to be around 1 in 100 children, but this 

number may be underestimated due to limited data from low and middle- income countries. 

Diagnosing and treating neurological damage caused by these disorders poses significant 

challenges. Early detection is essential in delaying symptoms’ onset and allowing for timely 

intervention. 

In neurophysiology, electroencephalography (EEG) has emerged as a valuable tool for 

diagnosing neurological disor- ders to develop effective interventions. EEG is a non-invasive, 

cost-effective, and portable technique that measures the brain’s electrical activity. By analyzing 

EEG signals, researchers can delve into the intricate workings of the brain and gain a deeper 

understanding of its dynamics and abnormalities in various neurological disorders [2]. 

This study explores a unique approach to extracting time- frequency features from complex 

electroencephalogram (EEG) recordings and converting them into input images for a deep 

learning (DL) network. The DL model utilized in this study was specifically optimized to address 

the research focus and trained using ground truth values corresponding to each image. The model 

underwent cross-validation to assess the classification accuracy. The paper is structured as 

follows: Section II provides a comprehensive review of relevant literature and studies in the field, 

while Section III outlines the materials and methods employed. The obtained results are 

presented in Section IV, and an in-depth discussion of the findings is provided in Section V. 

Finally, Section VI concludes the study and suggests avenues for future research. 

 

2. Literature Review 

The researchers in study [3] gathered resting-state EEG data from individuals diagnosed with 

mild cognitive impairment (MCI), Alzheimer’s disease (AD), and healthy controls (HC). They 

employed functional connectivity metrics derived from the EEG recordings to serve as input for 

a convolutional neural network (CNN).The CNN model achieved accuracies of 93.42% and 

98.54% for MCI and AD, respectively. This study demonstrated the importance of considering 

the spatial attributes of EEG in AD classification, but it did not directly compare AD and MCI. 
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Similarly, the authors of [4] conducted a study involving individuals with Alzheimer’s Disease 

(AD), Mild Cognitive Impairment (MCI), and healthy controls (HC), where EEG sig- nals were 

collected. The researchers employed a Convolutional Neural Network (CNN) for a three-class 

classification task, utilizing images representing EEG’s Power Spectral Density (PSD) features 

as input. Despite achieving an accuracy rate of 83.33%, which surpassed the performance of 

conventional machine learning methods, the accuracy remained relatively modest. 

Another model by authors of [5] presents a cascade neural network that integrated EEG and 

motion data for the classifica- tion of Alzheimer’s Disease (AD), Mild Cognitive Impairment 

(MCI), and Healthy Controls (HC). LR-FFT demonstrates an accuracy of 91.70%. The study 

used attention mechanisms and graph convolutional networks to analyze spatiotemporal data 

(ST-GCN). This technique facilitated automatic feature extraction from EEG and gait data, 

thereby minimizing the necessity for manual intervention. However, it is worth noting that the 

fusion data employed for distinguishing between AD and MCI posed challenges in terms of 

reproducibility. 

In the investigation by authors of [6], statistical features, frequency, and Lyapunov index were 

extracted to classify AD, MCI, and HC, achieving an accuracy of 97.50% with CNNs. While the 

study introduced a novel analysis method centered on task-state EEG, it is important to note that 

the data collection was confined to three self-defined electrode positions, potentially limiting the 

representation of the actual conditions experienced by individuals with AD and MCI. 

Using time-dependent power spectrum descriptors for CNN input, the authors of [7] achieved an 

accuracy of 82.30% in a dataset of 64 AD, MCI, and HC people. However, the accuracy for HC 

was lower (75 

The authors of [8] developed an AlexNet-based classifi- cation model using EEG data from 

dementia patients. They transformed the EEG data into time-frequency graphs using continuous 

wavelet transform and achieved a three-class clas- sification accuracy rate of 98.90%. However, 

converting EEG into RGB images was complex and involved significant human intervention. 

Switching to the realm of Autism Spectrum Disorder (ASD), resting-state fMRI (rs-fMRI) has 

been instrumental [9] [10] for classifying Autism Spectrum Disorder (ASD). Researchers using 

the ABIDE dataset, such as Abraham et al. [11], applied Support Vector Machine (SVM) 

techniques to achieve 66.9% accuracy, 53.2% sensitivity, and 78.3% specificity for ASD 

classification. Deep learning approaches were also explored, with one study reaching 70% 

accuracy, 74% sensitivity, and 63% specificity using a classifier [12]. Furthermore, a Convo- 

lutional Neural Network (CNN) model attained an accuracy of 70.22% in identifying ASD [13]. 

In a different approach, Graph Fourier transformation com- bined with SVM outperformed other 

methods in rs-fMRI analysis [14]. Hybrid features from EEG data, utilizing Short Fourier 

transform and SVM, achieved 96.44% accuracy in automated ASD identification [15]. Another 

study combined EEG and eye-tracking data, selecting relevant features using SVM and achieving 

an 85.44% classification accuracy rate [16]. These approaches enhance our understanding of 

ASD classification using neuroimaging techniques. 
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These studies showcase various approaches and achieve- ments in the EEG-based classification 

of neurodegenerative conditions. While they have achieved promising results, there are still 

challenges to overcome, such as accurately diagnosing MCI and reducing human intervention in 

the research process. Future research may explore alternative methods for feature quantification 

and consider multimodal data integration to improve the classification accuracy associated with 

AD and ASD. 

 

3. Materials And Methods 

Our methodology involves a multi-stage process, incorporat- ing the acquisition of EEG datasets 

related to Alzheimer’s and Autism brain disorders, signal preprocessing, Left-Right Fast Fourier 

Transform (LR-FFT) analysis for generating 2D im- ages, deep learning (DL) utilizing pre-

trained neural network models on LR-FFT images of brain disorders. The evaluation of our 

models is conducted using performance metrics. The entire workflow is illustrated in Figure 1, 

highlighting the sequential steps in our approach. 

A. EEG Datasets 

The Alzheimer’s dataset includes EEG resting state record- ings with closed eyes from a total of 

88 subjects [17]. The participants were divided into three groups: 36 individuals with 

Alzheimer’s disease (AD), 23 with Frontotemporal Dementia (FTD), and 29 healthy subjects 

(CN). A team of skilled neurologists obtained The EEG recordings from AHEPA Gen- eral 

Hospital of Thessaloniki. A Nihon Kohden EEG 2100 clinical device with 19 scalp electrodes 

and two reference electrodes was used for recording. Individuals have a seated posture while 

keeping their eyes shut during the recordings. 
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Fig. 1: Flowchart depicting the LR-FFT for classifying brain disorders from EEG signals using 

LR-FFT analysis. 

The skin impedance was examined, and the sampling rate was configured to 500 Hz. The 

recordings lasted 13 minutes for the AD group, 12 minutes for the FTD group, and around 14 

minutes for the CN group. Around 486 minutes of AD recordings, 277 minutes of FTD 

recordings, and 402 minutes of CN recordings were gathered in the dataset. 

The Autism (Rs-fMRI) dataset used in this study [18] is the ABIDE dataset that consists of 41 

cases of both Autism Spec- trum Disorder (ASD) and neurotypical control (NC) cases. 

B. Preprocessing 

The Alzheimer’s dataset EEG recordings were preprocessed by applying a Butterworth band-

pass filter, re-referencing the signals, and using the Artifact Subspace Reconstruction (ASR) 

technique to eliminate problematic data segments. Independent Component Analysis (ICA) was 

then performed, and ICA components categorized as either ”eye artifacts” or ”jaw arti- facts” 

were automatically rejected [17]. It is important to note that some recordings’ artifacts resulting 

from eye movement remained despite the resting state and closed eyes condition. Before the 

analysis of the Autism (Rs-fMRI) dataset, the collected raw data underwent preprocessing to 

reduce noise and artifacts. The DPARSF MATLAB toolkit [19] was em- ployed for 

preprocessing and analysis. The fMRI experiment utilized images weighted by the T2* 

relaxation time, which captures the decay of spins in the transverse plane. This allows monitoring 

of the changes in brain oxygenation over time. BOLD contrast was used to calculate the 

hemoglobin ratio in the blood, providing insights into the metabolic requirements of engaged 

neurons. To address potential issues such as spikes in the fMRI data resulting from electrical 

instability, the first five volumes were rejected, and only volumes with good equi- librium were 

retained. Time correction was performed through slicing to account for discrepancies in voxel 

acquisition time, and realignment was used to account for variations in head movements. Spatial 

normalization was applied to standardize the brain’s shape, size, and alignment across 

participants. The functional images were then normalized and enhanced with spatial smoothing. 

The automated anatomical labeling (AAL) technique was used to delineate 116 regions of 
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interest (ROIs) in the brain [20]. The default mode network (DMN) was selected as it exhibits 

robust brain neuronal activity in individuals with ASD during wakeful rest. 

 

4. Image Dataset Creation 

In our approach, the Left-Right Fast Fourier Transform (LR- FFT) rests upon the powerful Fast 

Fourier Transform (FFT) equation: 

 

where 

X(k) is the kth frequency component of the signal in the frequency domain,  

x(n) is the nth sample of the signal in the time domain, 

N is the total number of samples in the signal,  

j is the imaginary unit (j2 = −1). 

Our method employs a dual sliding window technique for feature extraction from the input 

signal. This distinctive approach involves using two sliding windows, each serving a specific 

purpose. The first sliding window focuses on the original signal segment, while the second is 

dedicated to a shifted segment version. By employing these two windows, we gain a 

comprehensive perspective on the signal’s temporal characteristics following the equation: 

        (2) 

where 

x(t) represents a signal or function of time t. 

e−j2πft represents a complex exponential function. 

1(w−ε<t<v+ε)equals 1 when t is within interval 

(w − ε, v + ε) and 0 otherwise. 

| · | denotes the absolute value of a complex number 

ε is a parameter representing a small positive value. 
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Within this framework, we compute the Fast Fourier Trans- form (FFT) for the original and 

shifted windows, extracting valuable frequency domain information. The significance of this 

dual-window approach lies in its ability to capture nu- anced variations in the signal’s frequency 

characteristics across different temporal viewpoints. 

Following the computation of FFT values for both windows, we calculate the minimum values 

of these FFT results. This step highlights the essential commonalities and differences be- tween 

the original and shifted signal segments. Subsequently, we leverage these minimum values to 

create composite repre- sentations mapped onto the red, green, and blue channels to generate 

RGB images. These RGB images offer a visually intuitive representation of the signal data, 

facilitating the extraction of intricate features and patterns. By combining the insights derived 

from the dual sliding windows and creating RGB images, our method provides a robust 

framework for comprehensive signal analysis and feature extraction. 

 

5. Classification 

Deep learning architectures such as GoogLeNet, SqueezeNet, AlexNet, and ResNet have 

significantly contributed to various computer vision tasks, including image classification, Figure 

2. 

 

 

 

 

 

 

 

 

 

Fig. 2: CNN Layers [21] 

GoogLeNet, also known as the Inception network, intro- duced the concept of the Inception 

module. Including parallel convolutional layers with different filter sizes in these modules allows 

the network to effectively capture and analyze features at various scales. The network can 

identify and understand specific details and comprehensive contextual information by 

incorporating multiple filter sizes. This multi-scale approach enhances the network’s ability to 

extract meaningful features and improves its overall performance. SqueezeNet, however, focuses 

on reducing the number of parameters and model size without sacrificing accuracy. It achieves 

this using 1x1 convolutions and a fire module combining 1x1 and 3x3 convolutions. AlexNet, 

one of the pioneering deep learning architectures, popularized convolutional neural networks 
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(CNNs) for image classification. It demonstrated the effectiveness of deep learn- ing on large-

scale image classification tasks and significantly outperformed previous methods. 

ResNet, unveiled in 2015, tackles the issue of training intense neural networks. The network can 

capture and learn incremental transformations by focusing on the residual in- formation. This 

approach allows the network to refine the difference between the input and output rather than 

solely focusing on learning the desired underlying mapping. This utilization of residual 

connections enhances the network’s performance and convergence during the learning process. 

ResNet has demonstrated top-tier performance across different image classification benchmarks. 

Our methodology employed a modified ResNet-18 archi- tecture for image classification, 

leveraging PyTorch’s neural network (NN) module. The ResNet-18 model, known for its 

efficacy in deep learning tasks, was utilized in a pre- trained state to capitalize on its already 

learned features from extensive datasets. This choice aids in the robust feature extraction 

necessary for accurate image classification. To tailor the network to our specific problem, we 

adapted the fully con- nected (FC) layer of the ResNet-18 model. This customization involved 

replacing the original fc layer with a sequential layer consisting of a linear transformation 

(mapping from 512 to 128 nodes), a Rectified Linear Unit (ReLU) activation function to deal 

with non-linearity, a dropout layer with a probability of 0.4 to prevent overfitting, and another 

linear transformation to match the number of classes (numClass) in our dataset. The forward 

method defines the data flow through the network. For optimization purposes, the Adam 

optimizer was employed with a learning rate set to 0.001, and the cross-entropy loss function 

was utilized as the criterion, specifically suitable for tasks involving multi-class classification. 

Additionally, we implemented a learning rate scheduler, ReduceLROnPlateau, to dynamically 

adjust the learning rate based on the model’s performance, enhancing the training efficiency. 

To assess the effectiveness of our model, we employed well-established evaluation methods, 

primarily relying on Con- fusion Matrices. These matrices allow us to visualize the relationship 

between predicted and true class labels within the test dataset. 

Within the context of confusion matrices, four distinct categories describe each prediction: 

• True Positive (TP): This category corresponds to in- stances where our model accurately 

predicts a sample as positive when it genuinely belongs to the positive class. 

• True Negative (TN): Conversely, the model correctly identifies samples as negative 

when they indeed belong to the negative class. 

• False Positive (FP): In cases where the model incorrectly predicts samples as positive 

when they are, in fact, negative. 

• False Negative (FN): Conversely, the model erroneously categorizes samples as 

negative when they are positive. 

These definitions form the basis for computing accuracies for each class using the following 

formula: 
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In our evaluation process, we adhered to a standard train-test split, where 80% of the subjects’ 

data were used to train the model, and the remaining 20% were reserved for testing. This 

approach ensures that the model’s performance is assessed on unseen data, allowing us to gauge 

its generalization capabil- ities and real-world applicability. This train-test split ratio of 80/20 

was chosen to balance training data sufficiency and the need for robust testing on an independent 

dataset. 

This comprehensive evaluation framework enables us to assess the model’s ability to make 

accurate classifications thoroughly. It provides valuable insights into its performance, all while 

maintaining a standard train-test split methodology. 

 

6. MODEL PERFORMANCE 

During the experiment, 18 patients from the Alzheimer’s Dataset were used. 10 with Alz and 5 

as a Control group (CN). A sliding window approach of 1 second with a 0.5-second overlap was 

employed to form RGB images. The analysis was conducted over 50 epochs, each representing 

a complete pass through the training data with a batch size of 16. Our model performances are 

presented in Tables I, II, III, and IV, and were as follows: Resnet18 achieved an accuracy of 

88.26%, GoogleNet achieved 86.82%, SqueezeNet reached 85.85%, and AlexNet showed an 

accuracy of 78.05%. These results reflect our model’s ability to distinguish between AD and CN 

patients based on EEG data as presented in Figure 3. 

 

(a) Confusion Matrix Alzheimer                              (b) Confusion Matrix BOLD 

Fig. 3: Confusion Matrices from the best models: (a) Alzheimer’s dataset; (b) BOLD 
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For the Autism Brain Imaging Data Exchange (ABIDE) dataset, a total of 36 patients with 18 

diagnosed with Autism Spectrum Disorder (ASD) and 18 neurotypical (N) control subjects. In 

this case, we worked with fMRI signals with a sliding window of 50 data points and an overlap 

of 25 and conducted our analysis across 50 epochs. The model performance on this dataset was 

exceptional, as presented in Tables V, ??, and ??. Resnet18 achieved an accuracy of 99.86%, 

GoogleNet reached 100%, and SqueezeNet and AlexNet achieved a perfect accuracy of 100%. 

These outstand- ing results indicate our model’s effectiveness in distinguishing between ASD 

and neurotypical individuals based on fMRI signals. 

Our model demonstrated strong performance in the Alzheimer’s and ABIDE datasets, 

showcasing its potential for accurately classifying patients and subjects in different medical 

contexts. The ABIDE dataset, in particular, yielded exceptional results, highlighting the model’s 

proficiency in autism spectrum disorder diagnosis based on fMRI signals. 

TABLE I: Classification Report  Alz- Resnet 

 

TABLE II: Classification Report Alz- Googlenet 

 

TABLE III: Classification Report Alz- Squezenet 
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7. Comparative Analysis 

Our study delved into the classification of EEG and fMRI images for AD and ASD, employing 

a customized ResNet-18 model and CNNs. Our model achieved an accuracy of 88.26% for AD 

and 99.86% for ASD. These results signify the potential of our approach for precise disease 

classification. 

TABLE IV: Classification Report Alz-Alexnet 

Class Precision Recall F1-Score Support 

AD 0.78 0.72 0.75 572 

CN 0.78 0.83 0.80 672 

Accuracy   0.7805 1244 

Macro Avg 0.7805 0.7805 0.7805 1244 

Weighted Avg 0.7805 0.7805 0.7805 1244 

Validation Accuracy   0.7805 78.05% 

TABLE V: Classification Report  ABIDE- Googlenet 

Class Precision Recall F1-Score Support 

AD 1.000 1.000 1.000 751 

CN 1.000 1.000 1.000 659 

Accuracy   0.9986 1410 

Macro Avg 1.000 1.000 1.00 0 1410 

Weighted Avg 1.000 1.000 1.000 1410 

Validation Accuracy   0.9986 99.86% 

Comparatively, our model’s performance closely aligns with state-of-the-art methods in a 

neuroimaging-based classification listed in Table VI. In AD classification, Duan et al. [3] utilized 

resting-state EEG data and achieved recognition accuracy rates of 93.42% for Mild Cognitive 

Impairment (MCI) and 98.54% for AD using a convolutional neural network (CNN). They 

emphasized the importance of spatial attributes in EEG- based AD classification. Ieracitano et 

al. [4] employed two- dimensional grayscale power spectral density (PSD) images of EEG and 

achieved an accuracy rate of 83.33% for a three-class classification model. Our model, 

outperforming traditional machine learning techniques, showcases competitive results in AD 

classification. 

In the context of ASD, our model surpassed the performance of some previous studies. Abraham 

et al. [11] applied Support Vector Machine (SVM) techniques to achieve 66.9% accuracy in 

classifying ASD using resting-state fMRI data. Aghdam et al. [13] introduced a Convolutional 

Neural Network (CNN) model that attained an accuracy of 70.22% in identifying ASD. Our 

model’s accuracy rate of 99.86% for ASD classification outshines these results, highlighting its 

potential for enhancing ASD classification accuracy. 
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TABLE VI: State of the Art in AD and ASD Classification 

 

In conclusion, our LR-FFT method marks a significant ad- vancement in neuroimaging research. 

These findings underline the potential of our approach in aiding early disease diagnosis and 

intervention. Additionally, insights from previous classi- fiers and innovative techniques 

emphasize the ongoing efforts to improve the accuracy and efficiency of neuroimaging-based 

classification systems. 

 

8. Conclusion 

In this study, our approach leverages the dual-window FFT technique to extract intricate 

frequency domain information from EEG data, offering a new perspective for feature 

representation. By computing the minimum values of FFT results from both original and shifted 

windows, we generated RGB images to facilitate comprehensive feature extraction. 

The results of our experiments on two distinct datasets, one for AD and another for ASD, 

demonstrated the effectiveness of the LR-FFT method. Achieving an accuracy of 88.26% for 

AD and an astonishing 99.86% for ASD on the respective datasets, our approach outperformed 

state-of-the-art methods. These promising results suggest the potential of LR-FFT as a valuable 

tool in the early detection and classification of neurodegenerative disorders. While our LR-FFT 

approach shows great promise, several avenues exist for future research and improvement. First, 

our study focused on two specific disorders, AD and ASD. Expanding the scope to include a 



Nisreen Said Amer, Samir Brahim Belhaouari, Othmane Bouhali, Abdelfatteh EL Omri  

394                    Evolutionary Studies in Imaginative Culture 

broader range of neurological conditions would enhance the versatility and applicability of the 

method. 

Additionally, further investigation is needed into the inter- pretability of the RGB images 

generated by our approach. Understanding these images’ specific features and patterns could 

provide valuable insights into the underlying neurolog- ical processes. 

Moreover, our study lacked an analysis of the computational resources required for LR-FFT 

compared to other feature extraction methods. Evaluating the computational efficiency of our 

approach would be beneficial, especially for real-time applications or resource-constrained 

environments. 

Furthermore, exploring the potential for LR-FFT in multi- modal data fusion, such as combining 

EEG with other neu- roimaging modalities like fMRI or MEG, could lead to more comprehensive 

diagnostic tools. 

In conclusion, our study demonstrates the power of LR- FFT in EEG-based classification tasks 

for AD and ASD. However, ample room remains for further research and refine- ment, including 

expanding the range of disorders considered, enhancing interpretability, evaluating 

computational efficiency, and exploring multi-modal data integration. These endeavors hold the 

promise of advancing the field of neurodegenerative disorder detection and classification. 
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